CAND1 controls in vivo dynamics of the Cullin 1-RING ubiquitin ligase repertoire
نویسندگان
چکیده
The combinatorial architecture of cullin 1-RING ubiquitin ligases, in which multiple F-box containing substrate receptors compete for access to CUL1, poses special challenges to assembling cullin 1-RING ubiquitin ligase complexes through high affinity protein interactions while maintaining the flexibility to dynamically sample the entire F-box containing substrate receptor repertoire. Here, using highly quantitative mass spectrometry, we demonstrate that this problem is addressed by CAND1, a factor that controls the dynamics of the global cullin 1-RING ubiquitin ligase network by promoting the assembly of newly synthesized F-box containing substrate receptors with CUL1-RBX1 core complexes. Our studies of in vivo cullin 1-RING ubiquitin ligase dynamics and in vitro biochemical findings showing that CAND1 can displace F-box containing substrate receptors from Cul1p suggest that CAND1 functions in a cycle that serves to exchange F-box containing substrate receptors on CUL1 cores. We propose that this cycle assures comprehensive sampling of the entire F-box containing substrate receptor repertoire in order to maintain the cullin 1-RING ubiquitin ligase landscape, a function that we show to be critical for substrate degradation and normal physiology.
منابع مشابه
Regulation of Cullin RING E3 Ubiquitin Ligases by CAND1 In Vivo
Cullin RING ligases are multi-subunit complexes consisting of a cullin protein which forms a scaffold onto which the RING protein Rbx1/2 and substrate receptor subunits assemble. CAND1, which binds to cullins that are not conjugated with Nedd8 and not associated with substrate receptors, has been shown to function as a positive regulator of Cullin ligases in vivo. Two models have been proposed ...
متن کاملTrade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire
Cullin-RING ubiquitin ligases (CRLs) catalyze the ubiquitylation of substrates many of which are degraded by the 26S proteasome. Their modular architecture enables recognition of numerous substrates via exchangeable substrate receptors that competitively bind to a cullin scaffold with high affinity. Due to the plasticity of these interactions there is ongoing uncertainty how cells maintain a fl...
متن کاملCullins Getting Undressed by the Protein Exchange Factor Cand1
Cullin-RING ubiquitin ligase complexes (CRLs) rely on a vast array of adaptor proteins to recognize their substrates. Pierce et al. and related papers from Zemla et al. and Wu et al. in Nature Communications show that Cand1 promotes exchange of adaptor proteins to regulate the CRL repertoire.
متن کاملDynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics
Dynamic reorganization of signaling systems frequently accompanies pathway perturbations, yet quantitative studies of network remodeling by pathway stimuli are lacking. Here, we report the development of a quantitative proteomics platform centered on multiplex absolute quantification (AQUA) technology to elucidate the architecture of the cullin-RING ubiquitin ligase (CRL) network and to evaluat...
متن کاملCullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae.
Cullin-based E3 ubiquitin ligases are activated through covalent modification of the cullin subunit by the ubiquitin-like protein Nedd8. Cullin neddylation dissociates the ligase assembly inhibitor Cand1, and promotes E2 recruitment and ubiquitin transfer by inducing a conformational change. Here, we have identified and characterized Lag2 as a likely Saccharomyces cerevisiae orthologue of mamma...
متن کامل